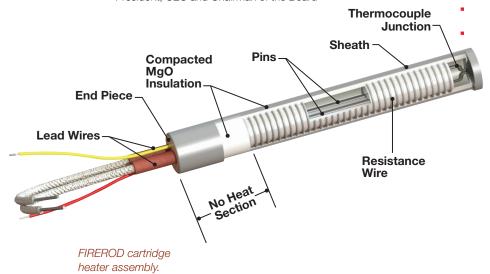


heaters | sensors | controllers

CUSTOM ENGINEERED AND : TESTED FOR CONTINUOUS : RELIABILITY

The Watlow FIREROD cartridge heater incorporates engineering excellence and is supported by over 60 years of solid industry performance across a broad range of simple and complex applications. As the premier choice in swaged cartridge heating, thousands of industrial manufacturers continue to choose Watlow as their trusted thermal partner and certified cartridge heater supplier.

Built using premium materials and tight manufacturing process controls, the FIREROD cartridge heater provides superior heat transfer, uniform temperatures and resistance to oxidation and corrosion throughout demanding high-temperature applications.


As the world's largest single source supplier of heaters, sensors and controllers, you can expect Watlow's manufacturing facilities to perform product and system testing above and beyond the competition—we do not cut corners. Every heater meets our stringent quality assurance specifications, in addition to those set forth by leading standards and regulating agencies, including the International Organization for Standardization (ISO) 9001.

Our pledge is to continuously improve design, manufacturing and delivery of the highest quality products as efficiently as possible. Our employees are committed to applying lean manufacturing processes to eliminate waste, ensure product consistency, improve productivity, reduce lead time and control cost.

You can count on over 60 years of Watlow engineering excellence, quality assurance, product testing and reliability inside of each FIREROD cartridge heater that leaves our manufacturing facilities.

Peter Desloge
President, CEO and Chairman of the Board

ENGINEERING EXCELLENCE YOU CAN COUNT ON EVERY DAY

or more than 90 years, unmatched engineering and quality control have established Watlow as a preferred supplier for many high-performance heating requirements. Unsurpassed application expertise and assistance have made the FIREROD cartridge heater the first choice for the most demanding applications. More than 250,000 variations of FIREROD heaters have been designed and manufactured for industries including semiconductor, medical equipment, foodservice, nuclear, aerospace, oil refining and petrochemicals.

HIGH-QUALITY, DURABLE MATERIALS YIELD THE BEST PERFORMANCE

If the raw material quality does not measure up, neither will your cartridge heater. Low-quality materials can result in oxidation, corrosion and deterioration to the heater's outer sheath due to chemical exposure, heat and atmospheric conditions.

Many years of testing materials and manufacturing processes across challenging applications have proven which materials and manufacturing methods yield the best performance and longest product life.

The FIREROD cartridge heater is manufactured using the highest quality materials and construction methods. Extensive quality testing throughout the design and production process ensures continuous and superior performance to meet our exacting requirements and yours.

FIREROD CARTRIDGE HEATER CONSTRUCTION – BUILT TO LAST

- Resistance Wire: The standard nickel chromium wire is computer calculated for gauge, length and spacing, wound on a supporting core and precisely centered to guarantee uniform temperatures and long life.
- Sheath: Our standard Alloy 800 sheath provides high-temperature resistance to oxidation and corrosion, proving far superior to 304 stainless steel alloys used by other manufacturers.
- Insulation: We use only high purity magnesium oxide (MgO), compacted to a carefully predetermined and closely monitored density. This assures high dielectric strength and optimal heat transfer.
- Lead Wire: Watlow purchases high temperature, flexible and fray-resistant wire available from certified suppliers.

TEMPERATURE PERFORMANCE EFFICIENCY

Watlow heaters are swaged to increase thermal conductivity and provide faster and more even heating. First introduced by Watlow, swaging heaters with the nickel-chromium resistance wire ensures even, efficient distribution of heat to the sheath contributing to prolonged heater life and lower energy consumption.

It is critical that your cartridge heater is able to tolerate temperature extremes and fluctuations. The high temperature (HT) FIREROD cartridge heater is designed for high temperature platen applications up to 1600°F (871°C).

Watlow's 1/6-inch FIREROD cartridge heater provides maximum performance in limited spaces.

2 - FIRERO

TIGHT MANUFACTURING CONTROLS ENSURE HIGH-QUALITY PRODUCTS

Instead of adapting manufacturing processes to comply with existing equipment, we design and build equipment that meets our very high quality standards. This ensures that each FIREROD heater measures up to consistent quality metrics to perform at its maximum intended capacity. Certified supplier partnerships enable us to take advantage of advances in materials science to ensure that our strict standards are met every time.

Specially designed swaging equipment produces consistent quality and tight tolerances.

The design of Watlow's fill machines, combined with the exacting specifications of the heater raw materials, ensure uniform fill thickness for better dielectric strength.

Our electronic winding machines enable extremely consistent windings for uniform temperature response and tight resistance tolerances.

THE RIGHT SIZE MAKES A DIFFERENCE

Using the correct size cartridge heater, configured for your application ensures optimum performance. This is why FIREROD cartridge heaters are available from 1/8- to 1-inch diameters and in lengths ranging from less than 1 to 100 in. (25 to 2540 mm)—the widest selection offered by almost any heater manufacturer.

SHIP IT FAST AND SHIP IT RIGHT

LARGEST SELECTION OF CARTRIDGE HEATERS

Watlow's full-line of heater products offer the industry's most complete selection of FIREROD cartridge heaters to accommodate an extensive range of lengths and diameters, watt densities, non-destructive testing and subassembly requirements. Watlow offers stock FIREROD cartridge heater configurations, as well as FIREROD cartridge heaters with extended capabilities for complex applications.

SAME DAY SHIPMENT OPTIONS

Watlow's extensive FIREROD RAPID SHIP program and unique lead adaptor (LA) modification method allow same day shipment of more than 150,000 configurations of stock FIREROD heaters and lead combinations. The LA modification method employs Watlow's patented lead attachment technique. A specially designed cap is swaged onto the FIREROD heater to permanently secure the leads. Most orders can be shipped the very same day they are received.

MADE-TO-ORDER OPTIONS MATCH YOUR NEEDS

Watlow's FAST TRACK™ program for made-to-order FIREROD cartridge heaters allows a range of FIRERODs to be shipped in two or five days.

With the FAST TRACK program, you can choose the size, voltage, wattage and termination from a predetermined set of options and choose when you want it—either a two- or five-day lead time.

PREVENT HEATER DAMAGE AND PREMATURE HEATER FAILURE

The four most common factors that contribute to premature heater failure are:

- 1. Contamination
- 2. Corrosion
- 3. Over temperature
- 4. Lead wire failure

PROTECT YOUR HEATER FROM CONTAMINANTS

Contamination occurs when foreign materials enter a heater's internal area resulting in a breakdown of the element or insulation materials. Contaminants are usually organic and cause either a gross electrical short to ground or an accelerated deterioration of the heater's internal elements and/or power leads.

Heaters that are prone to large temperature swings or cycling are most susceptible to ingesting harmful contaminants. When a heater temperature rises and falls, it "breathes" air in and out from its surroundings due to thermal expansion and contraction of the air inside. As application temperatures increase, substances normally considered inert can damage the heater when subjected to high temperatures.

These substances include lubrication oils, cleaning solvents, antiseize lubricants, plastics, fumes, electrical tape adhesives, gases emitted from over temperatured lead wire, potting compounds and moisture.

It is important that the seal end of the heater does not exceed the maximum operating temperature of the seal material. Permitting enough natural or forced air convection to cool the area, or specifying a length of no-heat zone between the heated and the sealed areas of the heater, will prevent temperatures from exceeding maximum operating levels. Smaller diameter heaters drop in temperature along a no-heat zone at a faster rate than larger diameter heaters. A reliable estimate for no-heat zone length can be interpolated for most temperature, seal and heater diameter combinations (see Graph A).

FIREROD heaters can be designed with special seals to resist contaminants and accommodate a range of application temperatures (see Table 1).

COMBAT SHEATH CORROSION

Corrosion occurs when the heater's outer sheath deteriorates and allows contaminants to enter the heater. Watlow offers several sheath materials to protect a FIREROD cartridge heater from corroding when exposed to various environmental elements (see Table 2). For certain applications, such as medical equipment and aerospace, passivated or electropolished heater sheaths can be provided to prevent corrosion.

Graph A: Seal Operating Temperature Versus No-Heat Zone Length **FIREROD Heater Diameters** 0.25 in. FIREROD 0.5 in. FIREROD 0.75 in. FIREROD Maximum Heater Temperature Note: This graph represents effects of no-heat lengths operating in areas that allow natural convection cooling. 0.5 in. 4 in. 1 in. 2 in. 2.5 in. 3 in. (25 mm) (38 mm) (51 mm) (64 mm) (76 mm) (102 mm) Length of no heat that extends beyond the heated part

Prevent Heater Over Temperature

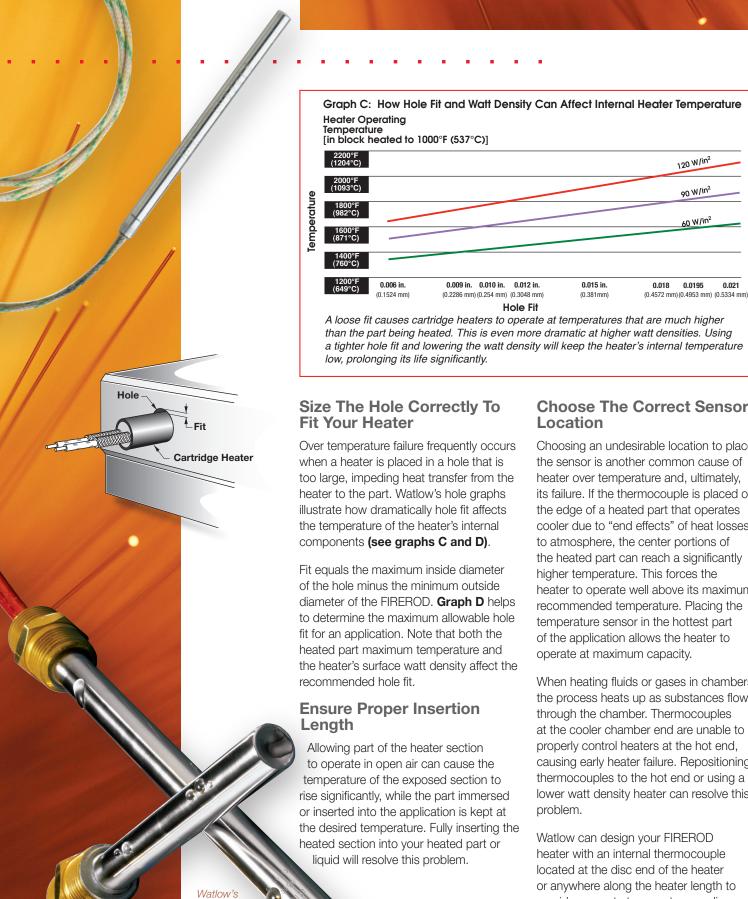
Watlow designers optimize the internal construction of your FIREROD heater based on the wattage and operating temperature that you specify. However, various conditions can cause the heater to reach over temperature.

The incidence of heater over temperature is minimized by reducing mineral deposit buildup, correctly sizing a hole to fit the heater and choosing the optimum heater insertion length and sensor location.

A heater that is forced to operate beyond its maximum operating temperature is destined for premature failure. Extreme over-temperature conditions will cause the heater's internal conductors to melt, dielectric breakdown and leakage/short circuit. Less severe over temperature conditions will accelerate a heater's normal aging process. Operating a heater 100°F (37°C) beyond its maximum recommended temperature can reduce heater life by as much as two-thirds.

Table 1 Seal Type Maximum Continuous Operating Temperature Silicone Rubber 350°F (176°C) PTFE 392°F (200°C) FIREROD HT (high temp.) 1000°F (538°C) Mineral Insulated Leads 1500°F (815°C)

Prevent Buildup In Immersion Applications


The watt density and control of the heater are critical to ensure that the heater functions correctly. With immersion applications, buildup of mineral deposits on the heater sheath can inhibit heat transfer between the heater and surrounding liquid.

When this occurs, heat is unable to escape, causing the heater's internal temperature to rise dramatically. For example, if local boiling occurs on the surface of the heater, the heater temperature reacts almost as if it is being operated in free, open air. (see Graph B).

Table 2	
Sheath Material	Typical Applications
Alloy 800 (FIREROD standard)	Excellent for most general applications
304 SS	Foodservice and medical; deionized water
316L SS	Semiconductor and medical

	Graph B: Inte	ernal Heater Tem	perature Vers	us Watt Density	/	
	800°F (426°C)					
ture	600°F (315°C)		Internal Heater Ten	nperature		
Temperature	400°F (204°C)		Water Temperature	e		
Tem	200°F (93°C)					
	0	100	200	300	400	500
	Sheath Wat	t Density (5/8 in. die	ameter FIREROD i	in water boiled ir	ambient cond	itions)

Water's ability to accept heat from a FIREROD heater changes with watt density. To ensure efficient heater performance in immersion applications, add 1° F for every W/in^2 of heater surface to the boiling point of water. Example: on a 200 W/in^2 heater, internal operating temperature = 200 W/in^2 + 212° = 412° F.

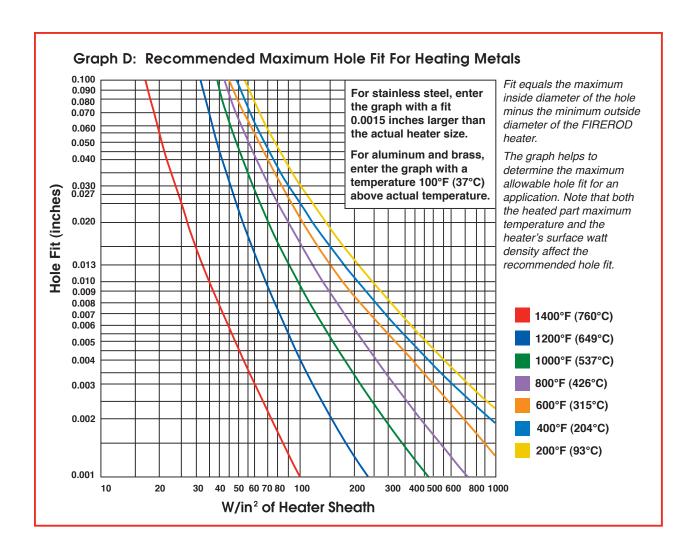
FIREROD

immersion heaters are

in liquids.

designed primarily

for direct immersion


Choose The Correct Sensor

0.021

Choosing an undesirable location to place the sensor is another common cause of heater over temperature and, ultimately, its failure. If the thermocouple is placed on the edge of a heated part that operates cooler due to "end effects" of heat losses to atmosphere, the center portions of the heated part can reach a significantly higher temperature. This forces the heater to operate well above its maximum recommended temperature. Placing the temperature sensor in the hottest part of the application allows the heater to

When heating fluids or gases in chambers, the process heats up as substances flow through the chamber. Thermocouples at the cooler chamber end are unable to properly control heaters at the hot end, causing early heater failure. Repositioning thermocouples to the hot end or using a lower watt density heater can resolve this

heater with an internal thermocouple located at the disc end of the heater or anywhere along the heater length to provide accurate temperature readings. This is especially beneficial for extremely sensitive, zoned or uniform temperature applications.

PROTECT YOUR LEAD WIRES

Match Lead Wire With Application Temperature

Placing power leads in a high temperature environment can lead to premature heater failure if the leads are not properly rated for the application. The binders in the lead wire insulation can bake out and the insulation becomes brittle. Any amount of flexing after this occurs usually results in electrical shorting between the lead wire conductors or a grounded surface. Watlow offers six types of lead wire insulation to combat this problem (see Table 3).

Provide Relief To Over-Flexed Lead Wire

Heater failure can occur when lead wire is flexed beyond capacity. This can be prevented by adding strain reliefs to carry mechanical stress to the stronger parts of the heater. Adjusting the lead length to add extra slack can also minimize the incidence of leads being stretched too far.

Put A Barrier Between Lead Wires And Heated Parts

It is important to protect lead wire from direct contact with a heated part. Stainless steel over braid and flexible metal conduit placed between the leads and heated components prevent lead wire abrasion from causing a heater to fail.

Table 3	
Insulation Material	Maximum Continuous Operating Temperature
Silicone Rubber	302°F (150°C)
PTFE	392°F (200°C)
Fiberglass/Silicone (GGS)	482°F (250°C)
Mica/Fiberglass/M	GT 842°F (450°C)
Ceramic Beads	1200°F (649°C)
Mineral Insulated L	eads 1500°F (815°C)

EXPERT TECHNICAL AND GLOBAL APPLICATION SUPPORT

WE ASK THE RIGHT QUESTIONS TO SOLVE YOUR PROBLEM We provide dedicated cartridge

We provide dedicated cartridge heater technical support throughout your project to optimize performance of the heater in your application. In

addition to low-quality materials and poorly controlled processes and standards, premature heater failure often occurs because a thermal supplier does not ask the right questions. It is important to know how your application relates to temperature, watt density requirements, temperature sensing, control systems and the process environment.

You can count on Watlow's global team of more than 400 consultative sales agents, field engineers, product specialists and systems engineering experts, to ask the right questions to understand and solve your problem—no matter how complex—correctly, quickly and cost effectively, to meet your application and product lifecycle needs.

YOUR ONE-STOP THERMAL SOLUTION PROVIDER

Unlike most suppliers that sell a single thermal product, Watlow's expertise is designing, recommending, building and delivering a complete thermal solution to fit your exact needs. Choosing a single source supplier means that you have one-stop access to expert design, products and engineering services for all of your thermal system components—heaters, temperature sensors, temperature controllers and power controllers.

DELIVERING THE COMPLETE SOLUTION WITH SUBASSEMBLIES

A subassembly can be as simple as attaching a special connector with a lead wire to developing a complex integration of sensors, controllers and other components. Watlow will partner with you throughout the process to develop a fully functional, complete thermal subassembly of various components into a modular unit that can be easily integrated with your application or process.

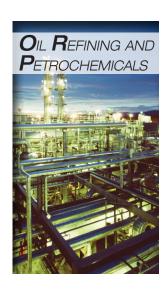
ENGINEERING EXPERTISE WITH SCALABLE MODELS AND PROTOTYPES

Our engineers can translate a concept into a model of a custom-designed cartridge heater using state-of-the-art, 3-D modeling tools. This can eliminate the need to test multiple prototypes that may not fit specific application requirements. Watlow utilizes the latest computational and finite element analysis (FEA) modeling techniques to measure system performance prior to production start up. Design revisions can be easily incorporated into a model, resulting in significant reduction in the lead time and cost to develop new products.

FIREROD CARTRIDGE HEATER INDUSTRY SOLUTIONS

A large semiconductor equipment manufacturer of back-end inspection and packaging processes uses FIREROD cartridge heaters. Heaters need to be designed with multiple heated zones in a short heater length to ensure consistent sealing of finished chip packages. The FIREROD heater's increased uniform thermal profile along its length substantially improves the yield of the process, extends the life of the heater and reduces downtime and maintenance issues.

Watlow designed an integrated FIREROD heater, sensor, and controller assembly for a foodservice operator's fryer application to ensure maintenance of proper oil levels, which is critical to preventing fires and containing operation costs. Integrating the sensor with the FIREROD heater also lowered the cost and the size of the assembly.


A government contractor that manufactures halon flame suppression systems required a solution to prevent an explosion from occurring in the event that projectiles puncture an aircraft wing's fuel tanks during combat. FIREROD cartridge heaters are submerged in the liquid halon, keeping it warm enough to increase gas pressure, evacuate the liquid halon and replace it with vapor.

A heater used on equipment that interfaces with a patient during surgery in an operating room must meet strict packaging, electrical leakage, reliability and wattage tolerance requirements. Engineers from Watlow and the medical device manufacturer collaborated to develop an innovative product design solution that minimized electrical leakage and satisfied government agency requirements for heater manufacturing processes and documentations.

A pressurized water nuclear reactor requires an external pressurizer to control pressure and prevent water from boiling within the reactor's primary loop— a safety critical factor. Watlow's specialized pressurizer cartridge heaters generate steam for the primary loop to regulate overall system pressure. These heaters are designed and manufactured to meet nuclear industry specifications, ensuring safe and continuous operation.

FIREROD cartridge heaters are used in a portable crude oil analyzer to boil a crude oil and water mixture in a sample chamber. Due to the risk of boil off, Watlow specially designed the heaters to eliminate occurrence of heaters exposure to open air and overheating. The FIREROD heater's swaged construction and close proximity of its resistance element winding to the sheath proved to significantly outlast competitive products considered for this application.

Find out more about Watlow and how we can provide thermal solutions for your company:

Phone: 1-800-WATLOW2 (1-800-928-5692)

Email: inquiry@watlow.com Website: www.watlow.com

About Watlow

Watlow Products and Technical Support Delivered Worldwide

North American Technical Support & Sales Offices

United States & Canada 1-800-WATLOW2

(1-800-928-5692)

Asian Technical Support & Sales Offices

China +86 21 3532 8532 India +91 40 6661 2700 Japan +81 3 3518 6630 Korea +82 2 2169 2600 Singapore +65 6773 9488 Taiwan +886 7 288 5168

European Technical Support & Sales Offices

Austria +43 6244 20129 0
France +33 1 41 32 79 70
Germany +49 7253 9400 0
Italy +39 02 458 8841
Spain +34 91 675 1292
United Kingdom +44 115 964 0777

Latin American Technical Support & Sales Office

Mexico +52 442 256 2200

Watlow provides best-in-class engineering expertise and leading thermal products that enable customers to thrive. Our world-class technology is offered in industrial heaters, temperature sensors and electronics and communications. Watlow engineers solutions that give our customers a competitive advantage in their respective markets.

Watlow brings its experience to numerous industries, including semiconductor processing, diesel emissions, energy and environmental technologies, foodservice equipment and life sciences to name a few

Since 1922, Watlow has grown in product capability, market experience and global reach. The company holds more than 450 patents and employs 2,200 people working globally through eight manufacturing facilities and three advanced technology centers. Headquartered in St. Louis, Missouri with sales offices in 16 countries around the world, Watlow continues to grow. Our pride and confidence stems from thrilling our customers with our products and the Watlow experience.

Your Authorized Watlow Distributor is:

Watlow® and FIREROD® are registered trademarks of Watlow Electric Manufacturing Company.

FAST TRACK $^{\text{TM}}$ is a trademark of Watlow Electric Manufacturing Company.

Revolutionizing the Heater Industry

The Watlow® FIREROD® cartridge heater incorporates engineering excellence and is supported by over 60 years of solid industry performance across a broad range of simple and complex applications. As the premier choice in swaged cartridge heating, thousands of industrial manufacturers continue to choose Watlow as their trusted thermal partner and certified cartridge heater supplier.

Built using premium materials and tight manufacturing controls, the FIREROD heater provides superior heat transfer, uniform temperatures, resistance to oxidation and corrosion and a long life even at high temperatures. Every system component that leaves our manufacturing facilities meets our strict quality assurance specifications, in addition to those set forth by leading standards and regulating industries.

To meet our customer's individual needs, there are many delivery options available for FIREROD heaters.

Performance Capabilities

- Part temperatures up to 1400°F (760°C) on alloy 800 sheath
- Watt densities up to 400 W/in² (62 W/cm²)
- Maximum voltage up to 480V

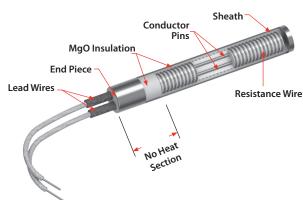
Features and Benefits

Nickel-chromium resistance wire

Ensures even and efficient distribution of heat to the sheath

Metalurgially-bonded conductor pins

Ensure a trouble-free electrical connection


Magnesium oxide insulation of specific grain and purity

 Results in high dielectric strength and contributes to faster heat-up

Alloy 800 sheath

Resists oxidation and corrosion from heat, many chemicals and atmospheres

Features and Benefits (con't)

Minimal spacing between the element wire and sheath

- Results in lower internal temperature
- Accommodates a design with fewer or smaller heaters operating at higher watt densities

International Organization for Standardization (ISO) 9001 certified

Provides confidence that quality and reliability expectations are met

UL® and CSA approved flexible stranded wires

 Lead insulation rated to temperatures up to 840°F (450°C)

Patented lead adapter (LA) method

 Allows same day shipment on more than 150,000 configurations of stock FIREROD heaters and lead combinations

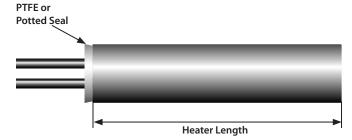
Typical Applications

- Semiconductor chamber heating
- · Semiconductor wire and die bonding
- Freeze protection and deicing of equipment in cold climates or applications
- · Humidity control
- · Patient comfort heating used in medical devices
- Mold die and platen heating
- Seal bars used in packaging equipment
- · Test sample heating in gas chromatography equipment
- · High temperature glass forming equipment

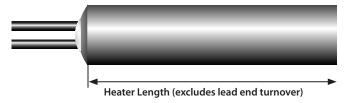
Applications and Technical Data

Tolerances

Diameter


- 1 in. (25 mm) units: ±0.003 in. (±0.08 mm)
- All other units: ±0.002 in. (±0.05 mm)

Sheath Length


- All units to $4^{1}/_{2}$ in. (114 mm) long: $\pm^{3}/_{32}$ in. (± 2.4 mm)
- 1/8 in. diameter units over 41/2 in. (114 mm) long: ±3%
- All other units over $4^{1}/_{2}$ in. (114 mm) long: $\pm 2\%$

Length Measurements

Pin Style and Potted FIRERODs

PTFE - Swaged-in Leads FIRERODs

Wattage

- 1/8 in. units: +10%, -15%
- All other units: +5%, -10%

Resistance

- 1/8 in. units: +15%, -10%
- All other units: +10%, -5%

Resistance changes with temperature. There are three circumstances under which resistance can be measured:

- 1. Room temperature (before use): nominal ohms are approximately 90% of Ohm's law calculation.
- 2. Room temperature (after use): nominal ohms are approximately 95% of Ohm's law calculation.
- 3. At temperature (during use): depending on application nominal ohms are approximately 100% of Ohm's law.

Note: Resistance and wattage values are approximate depending on application conditions.

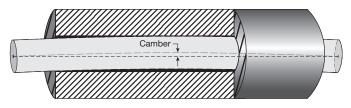
Component Recognition File Numbers

- UL® component rated to 240VAC (file number E52951)
- CSA component rated to 240VAC (file number LR7392)
- VDE component rated to 240VAC (file number 1164800-4911-0009) (file number 1164800-4911-0004)

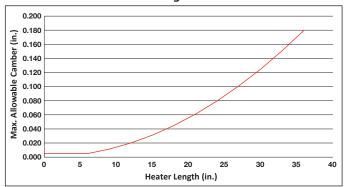
Note: Not all options or combinations of options are covered. UL®, CSA, VDE and CE marking is available upon request.

Dimensional Data

This table shows minimum/maximum sheath lengths for available FIREROD diameters.


FIREROD Diameter			Length				
Nominal	Actual		Min.		Max.		
in.	in.	(mm)	in.	(mm)	in.	(mm)	
1/8	0.122	(3.1)	7/8	(22.2)	12	(305)	
1/4	0.246	(6.3)	7/8	(22.2)	36	(915)	
3/8	0.371	(9.4)	7/8	(22.2)	48	(1220)	
1/2	0.496	(12.6)	7/8	(22.2)	60	(1520)	
5/8	0.621	(15.8)	1	(25.0)	72	(1830)	
3/4	0.746	(18.9)	1	(25.0)	72	(1830)	
1	0.996	(25.3)	1 ¹ / ₄	(32.0)	72	(1830)	

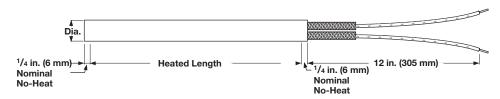
Indicates **recommended** maximum sheath length; however, longer lengths may be available.


Camber

Camber is defined as the maximum deviation of the heater's centerline from straight. FIREROD camber within allowable tolerances is verified via passage through a cylindrical gauge of specified length and diameter. Normally, slight camber does not present a problem since the heater will flex enough to fit into a straight, close-fit hole.

Camber Measurement

Allowable Camber Versus Length


Max. camber = 0.020 in. x (length in feet)² or 0.005 in., whichever is greater.

Electrical Data

The table below will assist you in selecting the correct FIREROD heater for your application, according to available voltage, amperage and wattage.

Please note, some combinations of minimum and maximum wattages are not available on the same heater diameter. If your application exceeds the limitations shown, contact your Watlow representative.

FIREROD			Min. Watts @ 120V [®] Heater Length		Max. Watts					
Diameter in.	Volts Max.	Ampere Max. ^①	1 in. (25 mm)	1 ¹ / ₂ in. (38 mm)	2 in. (50 mm)	120V 1-phase	240V 1-phase	480V 1-phase	240V 3-phase	480V 3-phase
1/8	240	3.1	_	8	5	360	720	_	_	_
1/4	240	4.4②	100	55	40	525	1050	_	_	_
3/8	240	6.7	65	35	25	800	1600	_	_	_
1/2	240	9.7	40	25	20	1160	2320	_	_	_
5/8	480	23.0	35	20	15	2760	5520	11,000	(5)	(5)
3/4	480	23.0	30	15	10	2760 [ⓐ]	5520	11,000	9550	19,100
1®	480	23.0	_	15	10	2760 ^④	5520	11,000	9550 [®]	19,100 ^④

Number Of Circuits ®					
Diameter in.	1-phase	3-phase			
3/4	3	1			
1	5	2			

- ① Determined by the current carrying capacity of internal parts and lead wire. Alternate material may be available.
- ③ Determined by the limitation of space for resistance winding. For minimum wattage of 240VAC multiply value by four.
- Higher wattages are available using more than one set of power leads. Multiply the wattage from the table by the applicable factor.
- **5** Contact your Watlow representative for data.
- ⑥ On ³/₄ in. (19 mm) diameter units, either three single-phase circuits or one three-phase delta or wye circuit is available. On 1 in. (25 mm) diameter units, either five single-phase or two three-phase delta circuits are available.
- A minimum charge per line item applies.

Watlow® and FIREROD® are registered trademarks of Watlow Electric Manufacturing Company.

UL® is a registered trademark of Underwriter's Laboratories, Inc.

Powered by Possibility

To be automatically connected to the nearest

1-800-WATLOW2 • www.watlow.com

inquiry@watlow.com

North American Technical Sales Office:

International Technical Sales Offices: Austria +43 6244 20129 0 India

China +86 21 3532 8532 France +33 1 41 32 79 70 Germany +49 7253 9400 0

India + Italy + Japan + Korea +

+91 40 6661 2700 +39 02 458 8841 +81 3 3518 6630 +82 2 2169 2600 Mexico +52 442 256 2200 Singapore +65 6773 9488 Spain +34 91 675 1292

Taiwan +886 7 288 5168 UK +44 115 964 0777

WATLOW.